Plant Uptake of Atmospheric Carbonyl Sulfide (COS) over Tropical Latin America <u>E. Campbell</u>¹, N. Blake², S. Meinardi², D. Blake², J. Berry¹, A. Wolf¹, S. Vay³, S. Montzka⁴, R. Kawa⁵, Z. Zhu⁵, and I. Baker⁶ Atmospheric carbonyl sulfide (COS) contributes to stratospheric aerosol and is a potential tracer of gross primary production (GPP). Earth System Research Laboratory's (ESRL) measurements of COS and CO₂ suggest that plant uptake of carbonyl sulfide is closely related to GPP and is several times estimates used in previous modeling studies. Recent airborne measurements from the TC4 experiment over tropical Latin America provide further evidence of a GPP-based uptake of COS by plants. The enhanced sink then requires an enhanced source to balance the global budget. A global atmospheric model driven by the GPP-based plant uptake and an enhanced ocean source is consistent with measurements from ESRL and the tropical airborne campaign. Figure 1. ESRL measurements of COS and CO_2 from MBL surface sites and NASA airborne measurements from the free troposphere. The COS latitudinal profile departs from the CO_2 profile for TC4 measurements over tropical Latin America where GPP is large relative to NEE and convective transport influences the free troposphere measurements. ¹Carnegie Institution for Science, Stanford University, 260 Panama Street, Stanford, CA 94305; 650-462-1047, Fax: 650-462-5859, E-mail: campbell@stanford.edu ²UC Irvine, Irvine, CA 92697 ³NASA Langley, Hampton, VA 23681 ⁴NOAA Earth System Research Laboratory, Boulder, CO 80305 ⁵NASA Goddard Space Flight Center, Greenbelt, MD 20771 ⁶Colorado State University, Fort Collins, CO 80524